Let $0<a<b<c$ be distinct positive reals.
Define four different probability distributions:
$$\mathcal{P}_{ab}:P_{a,ab}=\frac{a}{a+b}=1-P_{b,ab}$$$$\mathcal{P}_{bc}:P_{b,bc}=\frac{b}{b+c}=1-P_{c,bc}$$$$\mathcal{P}_{ca}:P_{c,ca}=\frac{c}{c+a}=1-P_{a,ca}$$$$\mathcal{P}_{abc}:P_{a,abc}=\frac{a}{a+b+c},\mbox{ }P_{b,abc}=\frac{b}{a+b+c},\mbox{ }P_{c,abc}=\frac{c}{a+b+c}$$
Does Shannon entropy of a random variable from distribution $\mathcal{P}_{abc}$ dominate the other three for all $a,b,c\in\Bbb R^+$ such that $0<a<b<c$?
In general when does $\mathcal{P}_{abc}$ dominate?